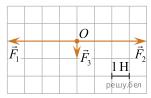

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлена траектория AB движения камня, брошенного горизонтально и движущегося в вертикальной плоскости xOy. Направление скорости камня в точке C указывает стрелка, обозначенная цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

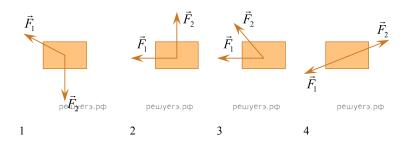

А. Электроемкость1) Фарадей**Б.** Напряжение2) Джоуль**В.** Работа3) Вольта

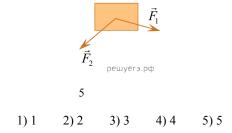
1) A1 63 B2 2) A1 62 B3 3) A2 61 B3

4) А2 Б3 В1

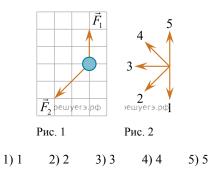
5) A3 Б2 B1

3. На материальную точку O действуют три силы: \vec{F}_1 , \vec{F}_2 , \vec{F}_3 (см. рис.), лежащие в плоскости рисунка. Модуль равнодействующей сил, приложенных к данной материальной точке, равен:

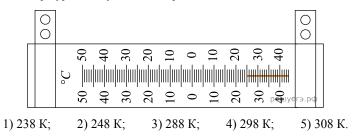

1) 9 H; 2) 4 H

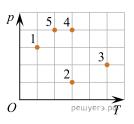

3) $3\sqrt{2}$ H;

4) 3 H;

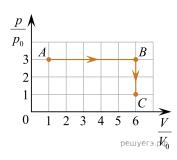

5) 1 H.

4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:




5. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

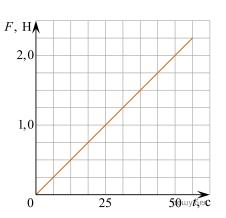
- **6.** Вблизи поверхности Земли атмосферное давление убывает на 133 Па при подъёме на каждые 12 м. Если у подножия горы, высота которой h = 288 м, атмосферное давление $p_1 = 101,3$ кПа, то на её вершине давление p_2 равно:
 - 1) 95,3 кПа
- 2) 96,2 κΠa
- 3) 97,4 кПа
- 4) 98,1 кПа
- 5) 99,2 κΠa
- **7.** На наружной стороне окна висит термометр, показания которого представлены на рисунке. Абсолютная температура *T* воздуха за окном равна:



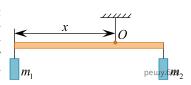
8. На p-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:

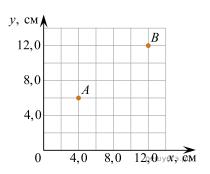


- 1) $U_A > U_B > U_C$ 2) $U_A > U_C > U_B$ 3) $U_B > U_C > U_A$ 4) $U_C > U_A > U_C$ 5) $U_A > U_B = U_C$
- **10.** Неизвестной частицей ${}_Z^AX$ в ядерной реакции ${}_4^9{\rm Be} + {}_2^4{\rm He} \to {}_6^{12}{\rm C} + {}_Z^AX$ является:

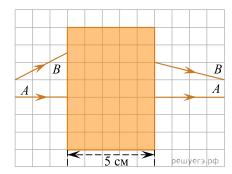

1)
$${}_{2}^{4}$$
He; 2) ${}_{1}^{1}p$; 3) ${}_{0}^{1}n$; 4) ${}_{1}^{0}e$; 5) ${}_{-1}^{0}e$.

- **11.** В баллон вместимостью $V=400~{\rm cm}^3$ при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=35,0~{\rm cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100~{\rm k}\Pi a$. Когда совершили $n=32~{\rm kayahus}$, давление p в баллоне стала. равным ... ${\rm k}\Pi a$.
- **12.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 6.0 м, B = 4.0 м/с, C = 1.0 м/с². Если масса тела m = 1.0 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... **Вт**.
- 13. Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид $x(t)=A+Bt+Ct^2$, где A=2,0 м, B=1,0 $\frac{\mathrm{M}}{\mathrm{C}}$, C=1,0 $\frac{\mathrm{M}}{\mathrm{C}^2}$, то кинетическая энергия E_{K} материальной точки в момент времени t=3,0 с равна ... Лж

14. Тело массой m=560 г двигалось по гладкой поверхности со скоростью $\upsilon_0=2,0$ $\frac{\mathrm{M}}{\mathrm{C}}$. В момент времени $t_0=0$ с на тело в направлении его движения начинает действовать сила \vec{F} , модуль которой линейно зависит от времени (см. рис.). Скорость тела достигнет значения $\upsilon=30$ $\frac{\mathrm{M}}{\mathrm{C}}$ в момент времени t, равный ... с.

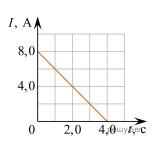


- 15. При абсолютной температуре $T=301~{\rm K}$ в сосуде находится газовая смесь, состоящая из водорода, количество вещества которого $\upsilon_1=2,4~{\rm моль},$ и кислорода, количество вещества которого $\upsilon_2=0,60~{\rm моль}$ Если давление газовой смеси $p=150~{\rm к\Pi a}$ то объем V сосуда равен ... л.
- **16.** Вода $\left(\rho=1,0\cdot10^3\ \frac{\mathrm{K\Gamma}}{\mathrm{M}^3},c=4,2\cdot10^3\ \frac{\mathrm{Дж}}{\mathrm{K\Gamma}\cdot\mathrm{K}}\right)$ объемом $V=250\ \mathrm{cm}^3$ остывает от температуры $t_1=98^\circ\mathrm{C}$ до температуры $t_2=20^\circ\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой m=1,0 т, то они могут быть подняты на максимальную высоту h равную ... дм.
- 17. Однородный стержень длиной l=1,4 м и массой m=4,0 кг подвешен на нити в точке O и расположен горизонтально. К концам стержня на невесомых нитях подвешены два тела массами $m_1=2,0$ кг и $m_2=5,0$ кг (см. рис.). Если система находится в равновесии, то расстояние x от точки O до левого конца стержня равно ... см.



18. На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H = 2,0 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha = 45^{\circ}$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.

19. Если точечный заряд q=5,00 нКл, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.



- **20.** Если в тепловом двигателе газ совершил за один цикл работу в n=6,1 раза меньше количества теплоты, отданного холодильнику, то термический коэффициент полезного действия η теплового двигателя равен ... %.
- **21.** В идеальном *LC*-контуре, состоящем из катушки индуктивности $L=80~{\rm M}\Gamma{\rm H}$ и конденсатора емкостью $C=0,60~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=66~{\rm M}{\rm K}Д{\rm ж}$, то в момент времени, когда напряжение на конденсаторе $U=10~{\rm B}$, сила тока I в катушке равна ... мА.
- **22.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

23. На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=546$ нм дифракционный максимум четвертого порядка ($m_1=4$) наблюдается под углом θ , то максимум пятого порядка ($m_2=5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.

- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30$ В, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6.0 А, C=-0.50 $\frac{\rm A}{\rm c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- 27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\mathbf{H}\cdot\mathbf{c}}{\mathbf{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости \mathbf{v} движения электроскутера равен ... $\frac{\mathbf{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью $C=150\,$ мкФ и катушки индуктивностью $L=1,03\,$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.